Stratospheric Methane Global Warming Veil

Citation
, XML
Authors
Originally by Light, M.P.R., October 21, 2011, edited by Carana, S.

By 2004 methane had formed a world encompassing stratospheric global warming veil between 30 and 40 km  heigh (0.7 ppm methane = 3 GT methane emissions) where the mean methane global warming effect was equivalent to about 70 ppm carbon dioxide (Figure 1)(Nassar et al. 2005; Light 2011). 


However the stratospheric methane  concentration ranged almost as high as about 1 ppm methane ( = 5GT of Arctic methane emission) which is equivalent to the global warming potential of some 100 ppm carbon dioxide (Nassar et al. 2005; Light 2011). 

The mean value of methane concentration in 2004 in the stratosphere between 30 km and 40 km height is equivalent to the  maximum amount of  methane (3.3 GT) that should be expelled by the decomposition of the Arctic methane hydrates by 2029 (Figure 1)(Light 2011). 

What does not bode well for our future survival as a species in that even by 2004, the mean stratospheric methane concentration between 30 km and 40 km altitude had already exceeded the predicted  mean atmospheric 0.66 ppm atmospheric methane concentration (3.3 GT of methane emission) predicted for 2029, while the maximum stratospheric methane concentration (1 ppm atmospheric methane concentration  = 5 GT of Arctic methane emission) had reached values almost 1.5 times times as high as the 2029 value by 2004 (Figure 1). 

The present day rate of expulsion of methane into the atmosphere from the Arctic region (1.87 to 2 ppm methane = 9.35 to 10 GT of Arctic methane expelled) is equivalent to a mean worldwide temperature rise of some 1.87 to 2°C (Light, 2011; Blasing, 2011).

If this was the mean atmospheric methane concentration it would represent the final tipping point after which mankind will lose all control of the now fast accelerating and self sustaining global warming system.  

As the light-rising Arctic methane is spread around the world by the Arctic stratospheric vortex system (NSIDC 2011a), it can be expected to lead to more ozone and water vapor in the stratosphere, both of which will add to the greenhouse effect and thus cause temperatures to increase globally. 

In the Arctic, where there is very little water vapour in the atmosphere, the ozone layer may well be further depleted, because the rising methane behaves like a chloro-fluoro-hydrocarbon (CFC) under the action of sunlight increasing the damaging effects of ultraviolet radiation on the Earth’s surface (Engineering Toolbox, 2011; Anitei, 2007).

Large abrupt releases of methane in the Arctic lead to high local concentrations of methane in the atmosphere and hydroxyl depletion, making that methane will persist longer at its highest warming potential, i.e. of over 100 times that of carbon dioxide. (Carana, S., 2011a).

The presence of a large hole in the Arctic ozone layer in 2011 is most likely a result of this same process of ozone depletion caused by a buildup of greenhouse gases from the massive upward transfer of methane from the Arctic emission zones through the lower stratosphere up into the stratospheric veil between 30 km and 47 km height (Science Daily, 2011).

The stratospheric methane veil between 30 km and 47 km will continue to increase in concentration and depth causing further catastrophic global warming. The combined dangers of the lack of the ozone shield (as polar ozone holes grow) and of the extremely high and rising temperatures may lead to the widespread extinction affecting all species of life on Earth. 

Winter rains have been delayed a month this year in Spain and on October 14th, 2011, Seville measured a temperature 10°C higher than the previous year. It seems as though the 10°C temperature anomaly of this stratospheric methane global warming veil has already overlapped Spain and is spiraling westwards and southwards to the New World and Pacific where it will greatly enhance the El Nino effect before it starts to penetrate the southern hemisphere. 


References

Anitei S. 2007. How is the Ozone layer menaced? The Daily Climate. www. Daily Climate.org.
http://news.softpedia.com/news/How-is-the-Ozone-Layer-Menaced-53762.shtml

Blasing T.J. Recent Greenshouse Gas Concentrations. CDIAC. Carbon Dioxide Information Analysis Center.
http://cdiac.ornl.gov/pns/current_ghg.html

Carana, S. (2011a). Runaway Warming, 2011. Geo-engineering blog
http://geo-engineering.blogspot.com/2011/09/runaway-warming.html

Carana, S. (2011b).  Runaway global warming, 2011. Knol
http://knol.google.com/k/sam-carana/runaway-global-warming/7y50rvz9924j/64

Engineering Toolbox, 2011. Gases – Specific Gravities.
http://www.engineeringtoolbox.com/specific-gravities-gases-d_334.html

Lide D. R. and Frederikse, H.P.R., 1995. Handbook of Chemistry and Physics. 75th Ed.
CRC Press, London, pp. 1-1 to 1 -33.

Light M.P.R. 2011. – Global Warming
http://globalwarmingmlight.blogspot.com

Nassar R., Bernath P.F., Boone C.D., Manney G.L., McLeod S.D., Rinsland C.P., Skelton R., Walker K.A., 2005. Stratospheric abundances of water and methane based on ACE-FTS measurements. Geophysical Research Letters, Vol. 32, LI5504, 5 pp.
http://www.atmosp.physics.utoronto.ca/~rnassar/Publications_pdfs/Nassar_water_methane_2005GL022383.pdf
 
NSIDC, 2011a. The Polar Vortex.  National Snow and Ice Data Center. 

http://nsidc.org/arcticmet/patterns/polar_vortex.html
 
Science Daily, 2011. Record Depletion of Arctic Ozone Layer Causing Increased UV Radiation in Scandinavia.
 
Wofsy, S.C. (image: HIPPO-1 flight along the date line, January 2009)
HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols
Phil. Trans. R. Soc. A (2011) 369, 2073–2086 doi:10.1098/rsta.2010.0313
http://rsta.royalsocietypublishing.org/content/369/1943/2073.full.html

  1. The potential for releases from Arctic stores to cause runaway global warming
  2. Arctic temperature anomalies September 2011
  3. Proposals to most effectively shift towards a more sustainable economy
  4. Thermal Expansion of the Earth’s Crust Necessitates Geo-engineering
  5. Towards a Sustainable Economy
  6. Ten most Electrifying Transport Ideas
  7. Transport
  8. America needs more wind turbines, onshore and offshore
  9. Electric Vehicles – Frequently Asked Questions
  10. Ten Dangers of Global Warming
  11. The Use of Beamed Interfering Radio Frequency Transmissions to Decompose Arctic Atmospheric Methane Clouds
  12. Stratospheric Methane Global Warming Veil
  13. Space Elevators
  14. Runaway warming
  15. Methane linked to Seismic Activity in the Arctic
  16. The Biochar Economy
  17. Vortex towers could vegetate deserts
  18. Biomass
  19. Towards a Sustainable Economy
  20. Runaway Global Warming
  21. Carbon-negative building
  22. Posts by Sam Carana – by date
  23. What will power your next car?
  24. Action Plan
  25. Earth at Boiling Point
  26. Danger of Arctic methane releases: the figures
  27. Feebates
  28. Global Warming
  29. Myths about Electric Vehicles
  30. Ten most Electrifying Transport Ideas of 2009
  31. America can win the clean energy race
  32. The Threat of Methane Release from Permafrost and Clathrates
  33. Reinventing the Wheel
  34. Global Warming Action Plan
  35. Electric Vehicles
  36. Let electric vehicles power homes!
  37. Transport troubles . . . and how to resolve them
  38. We want EVs now!
  39. Target 2020
  40. Climate Change Action Plan
  41. Communities without Roads
  42. Epistemology
  43. Green Flight Challenge
  44. SuperB Grid
  45. Biochar
  46. Funding of Carbon Air Capture
  47. Subaru Stella
  48. Electric Ford F-150
  49. The Nissan LEAF
  50. The Lynx
  51. Feebates are most effective
  52. Global Warming – Red Alert!
  53. Open Letter warning President Obama about a Global Cap-and-Trade Scheme
Follow

Get every new post delivered to your Inbox.